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Abstract: This paper is about schemes and how they can assist in the learning of 
word problems in mathematics. First the paper presents the theoretical background 
and working definitions for schemes suggested by cognitive psychology. Analysis of 
various types of word problems and the developmental trend that children exhibit in 
solving these problems follows. A special analysis is devoted to a number of 
constrained schemes that underlie common mathematical word problem types. The 
use of schemes is extended to open-end word problems showing that these too can 
be better solved methodically with the help of schemes. 

 
Theoretical background 

This paper deals with schemes1 and how schemes assist in learning arithmetic word 
problems. Many philosophers and psychologists considered the notion of schemes 
with some variations. The term 'scheme' is used as a means of perceiving the world 
as an innate logical development and as patterns of action. 
  
Piaget (Piaget & Inhelder, 1969; Piaget, 1970; Piaget, 1971, 1967; Piaget, 1985) 
dealt with schemes of action, writing:  
 

A schema of an action consists in those aspects which are repeatable, 
transposable, or generalisable (Piaget, 1980, p.205). 
 

Fischbein (Fischbein & Grossman, 1997; Fischbein 1999) based his definition on 
Piaget´s notion of a scheme which defines a scheme not merely as a perceptual 
framework, but rather as a pattern of action. Fischbein in particular believed that a 
scheme is also a strategy for solving a certain class of problems.  He too, stressed 
the behavioral aspect of a scheme.  For him a scheme is a plan for action. Let us 
take a simple example (a kinetic scheme of action): Opening a door by its handle, 
knowing that the handle is to be pushed down and then the door pushed in or pulled 
out, is a scheme. We hardly ever pay attention to it because for us it is instinctive, 
but once we enter another system which we do not recognize, such as in a train 
                                                 
1 We will use the term 'scheme' and 'schemes' (in English),   although 'schema', 'schemata' (in 
Latin) and 'schemas' are used   in quotations from other authors, and we regard all these to be 
interchangeable.  
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(pushing the green knob to open the door), we need to construct a new scheme of 
action.   
 
Fischbein distinguished between two types of schemata: the first "indicates a kind 
of condensed, simplified representation of a class of objects or events" (Fischbein, 
1999, p.36) and the second is "adaptive behavior of an organism …achieved by 
assimilation and accommodation" (Fischbein, p.37). For Fischbein, a schema is a 
program which enables the individual to (a) record, process, control and mentally 
integrate information, and (b) react meaningfully and efficiently to the 
environmental stimuli. 
 
Cognitive psychologists of the 80's considered schemes to be semantic nets 
expressing relations, or scripts of behavior, such as well known behavior at a 
birthday party or at a restaurant (Schank & Abelson, 1977; Anderson, 1980).  
Within the stream of cognitive psychology of the 80's we can find the following 
description of what a scheme is: 
 

A schema is a mental representation of some aspect of the world. It has slots 
that are related to each other in prescribed ways and that are filled by 
stimuli to create an instantiation of the schema…(Howard, 1987, p. 176) 

 
Rumelhart and Norman (1985) characterized schemes as follows: 
 

Schemas are data structures for representing the generic concepts stored in 
memory. There are schemas for generalized concepts underlying objects, 
situation, events, sequences of events, action and sequences of actions. 
…Schemas in some sense represent the stereotypes of these concepts. 
Roughly, schemas are like models of the outside world. To process 
information with the use of schema is to determine which model best fits the 
incoming information (p. 35-36). 
 
Some important features of schemas: 

1. Schemas have variables; 
2. Schemas can embed, one within another; 
3. Schemas represent knowledge at all levels of abstraction;  
4. Schemas represent knowledge rather than definitions; 
5. Schemas are active recognition devices whose processing is aimed 

at the evaluation of their goodness of fit to the data being processed 
(p. 36).  
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Although a scheme is composed of many details, it is not merely a pile of objects, 
but rather an organized collection of objects with the relations between them giving 
meaning to all its components. Thus, when observing the components below (Figure 
1), they seem to hardly have any meaning, yet within  the  scheme 'face', they are 
readily and fully understood (Figure 2).  (Taken from Rumelhart, 1980) 
 
 

 
Figure 1.   

 

 
Figure 2.  

 
 
Schemes and Word Problems 
Difficulties encountered by students in solving word problems are cognitively based 
and, to some extent, universal.  For the past thirty years researchers have been 
inquiring into what lies behind the major difficulties children encounter with word 
problems. At one stage, researchers  made  a distinction between different additive 
problems and classified them into three main categories: The research was 
conducted in several countries and all agreed on the same categorization of additive 
word problems (Nesher & Teubal, 1975; Nesher & Katriel, 1977; Carpenter, Moser, 
& Romberg, 1982; Vergnaud, 1982; Nesher, 1982a; Nesher, Greeno & Riley, 
1982b; Greeno & Kintsch, 1985; Riley & Greeno, 1988; Vergnaud, 1988; 
Verschaffel, 1993; Kintsch, 1994). Table 1 presents the main categories of additive 
word problems agreed upon: 

 
Further research on the level of difficulty of each type has detected a more subtle 
distinction between problems within each category, as presented in Table 2. 
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Table 1. 
Three general semantic categories of addition and subtraction word problems 

 
Current 
Name of 
Category 

Characteristics Example 

1. Combine Involves a static relationship between There are 3 boys 
 sets. Asks about the Union set or  and 4 girls. How 
 one of two disjoint subsets many children are 
  there altogether? 
   
2. Change Describes an increase or decrease  John has 6 marbles. 
 in some initial state, to produce  He lost 2  marbles. 
 a final state. How many marbles 
  does John have now? 
   
3. Compare Involves static comparison  Tom has 6 marbles. 
 between two sets. Asks about Joe has 4 marbles. 
 the difference set or about one How many more marbles 
 of the sets where the difference does Tom have than Joe? 
 set is given  
   

 
 

 
As can be seen, each of the 14 problems presents a different level of difficulty to the 
solvers. Change 5 and 6 problems, in which the Final and Change sets were given 
and the initial set was unknown, were most difficult at all grade levels and in all 
studied countries. As with the Change problems, the difficulty of Combine and 
Compare problems also varied depending on the unknown. Combine 2 problems, 
for example, were significantly more difficult than Combine 1 problems. Compare 
problems in which the referent was unknown were more difficult than any of the 
other Compare problems. 
 
The Development of Schemes 
Schemes develop. As noted by Piaget, this is achieved by two main mechanisms: 
assimilation and accommodation. As children start to describe the world with 
numbers, they form the notion of a set (Greeno 1978; Nesher et al., 1982b; Fuson 
1992). Their first mathematical step will be counting objects. When the children 
start school, we can assume that they have already attained the following Level 1 
schemes: 
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Table 2. 
14 types of addition and subtraction word problems (semantic categories and 
position of the unknown) 
 
Title General Description Percent2 of 

success (%) 
Combine 1 Question about the union set (whole). 79 - 86 
Combine 2 Question about one subset (part). 46 - 52 
   
Change 1 Increasing, question about the final set. 79 - 82 
Change 2 Decreasing, question about the final set. 72 - 75 
Change 3 Increasing, question about the change. 62 - 72 
Change 4 Decreasing, question about the change. 75 - 77 
Change 5 Increasing, question about the initial set. 28 - 48 
Change 6 Decreasing, question about the initial set. 39 - 49 
   
Compare 1 Mentioning ‘more’, question about the difference set. 76 - 85 
Compare 2 Mentioning ‘less’, question about the difference set. 66 - 75 
Compare 3 Mentioning ‘more’, question about the ‘compared’. 65 - 80 
Compare 4 Mentioning ‘less’, question about the ‘compared’. 66 - 81 
Compare 5 Mentioning ‘more’, question about the referent. 43 -60 
Compare 6 Mentioning ‘less’, question about the referent. 35 - 54 

 
 

 
At Level 1:  Children have already constructed the schemes for counting (which 
means the ability for Predication and Cardinality). They are able to identify sets 
by a variety of verbal descriptions (concept names, locations, points of time, 
possessions, etc.); they have the ability to perform simple operations such as adding 
or removing objects from sets and understanding that it changes the number of the 
objects in the set. Their arithmetic competence consists of the ability to count and 
find the cardinal number of a given set (for details, see Nesher et al., 1982b). When 
in the possession of these kinds of schemes, children can solve various types of 
problems, counting each time from the beginning. 
 
At Level 2:  Children are able to link events by cause and effect and anticipate 
results of actions described in ordinary language. We say that they have constructed 
a change scheme.  In arithmetic, the + and - operations are seen as distinct, not 
related, and the = sign (equality sign) is understood as an instruction to perform a 
procedure.  

                                                 
2 There were variations among researchers that are described as a range of successes 
rather than a single number 
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At Level 3:   Children are able to integrate a “Part-Part-Whole” scheme that can 
be used to represent set relations with a slot for an unknown quantity, for a set that 
was defined by its concepts (predicates). A set can also be induced by means of 
relative comparison. The schemes at this level are related to the understanding of 
class inclusion. In arithmetic at this level, the additive structure is reversible and 
includes the = sign as denoting an equivalent relation. The underlying scheme for 
this level is schematically described in Table 3.  

 
Table  3. 
Aspects of Development 
 
Scheme 
Level 

Empirical Knowledge Mathematical Operations 

   
1 Reference to sets, adding and Ability to count and find the 
Counting 
sets 

removing members of sets. cardinal number of a set. 

   
 Understanding ‘put’, ‘give’, The order among numbers. 
 ‘take’, etc. as denoting change  2 < 5 < 8 
 in location or possession  
   
2 Ability to link events by cause Understanding addition and subtraction 
Change and effect. Reference to the as procedures. ‘+’ and ‘-’are distinct 
 amount of change. Understanding  a + b → c 
 a sequence of events ordered in a -  b → c 
 time in a non-reversible manner  
   
3 A reversible part-part-whole Understanding the relation among 
Part-Part- schema is available, and can be three numbers in an equation (=). 
Whole used to find the unknown part in  
 any slot in a sequence of events. Connection between addition and 
  subtraction: 
 Understanding class-inclusion. if  a  + b = c,  then 
      c  -  b = a   and    c -  a = b 
   
4 Reversibility of non-symmetrical The ability to handle inequality 
Directional relations. Ability to handle and its relationship to equality, 
relations directional description (more/ equalizing it by addition or 
 less), and quantify a relational subtraction: 
 set (relative comparison). if  a  > b,        then 
      a  -  c = b   and     b +  c = a 
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Note that the Part-Part-Whole scheme of Level 3 is reversible and also incorporates 
the arithmetic additive relationship which now includes the operations + and - as 
related, serving as inverse operations operating on the same structure. 
 
At Level 4: Children can employ the reversible scheme for non-symmetrical 
relations (that was already initiated at Level 2). Directional (ordered) descriptions 
(i.e., ‘more’, ‘less’) can be handled in a flexible fashion. The arithmetic at this level 
includes the ability to handle inequality, and the ability to equalize inequality by 
addition or subtraction.  
 
In the description of the above developmental levels we assume that at least two 
distinct structures of knowledge are involved: 

(a) A child’s knowledge of the world, and 
(b) A child’s knowledge of logico-mathematical structures. 

 
The sources of these two knowledge structures, as was noted by Piaget (Piaget, 
1970; Piaget, 1971,1967), are not the same. The logico-mathematical growth of 
children cannot, of course, be understood as divorced from their experience with 
physical objects, yet the mechanism for that growth is different, as indicated by 
Piaget’s reference to ‘simple abstraction’ and ‘reflective abstraction’ (Piaget & 
Inhelder 1969; Piaget 1971, 1967). 
 

 
Understanding the Levels of Performance in Solving  

Arithmetic Word Problems 
In the last section we outlined the general kinds of knowledge that we assume 
underlie arithmetic problem-solving. We turn now to the empirical findings and 
show how they can be understood in the light of the above developmental levels. 
Table 3 presents this development in two distinct knowledge realms: the empirical 
knowledge about the world and the logico-mathematical knowledge. 
 
We will now explain the relation between Table 3 and the ability to solve word 
problems.  In Table 3, Level 1 is defined by the ability to represent and operate on 
single sets. The knowledge available to represent information about sets includes 
schemes for identifying sets and the ability to represent the cardinality of a set 
(Riley, 1983; Riley & Greeno, 1988).  These schemes are sufficient to solve Change 
1 and 2 and Combine 1 problems, which share two main characteristics: (1) the 
strategy required for solving the problem can be selected on the basis of partial and 
local information, and (2) the solution set is directly available for counting at the 
time the question is asked. 
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For example, consider how Level 1 children could solve Combine 1 problems such 
as: 

Joe has 3 marbles. 
Tom has 5 marbles. 
How many marbles do Joe and Tom have together? 
 

Understanding the first sentence requires that children use their knowledge of the 
possessive verb ‘has’, to represent a set of marbles belonging to Joe. On the basis of 
this representation, children then select an appropriate display and count out a set of 
three objects. This procedure is repeated for the second sentence. To determine the 
answer, children need only to count the combined set. Thus solving Combine 1 
problems involves three isolated actions of counting well-defined sets.  Similarly, 
Change 1 and 2 problems can also be solved on the basis of local problem features 
that specify completely separate actions of counting.  
 
For example, consider the following Change 1 problem: 

Joe had 3 marbles. 
Then Tom gave him 5 more marbles. 
How many marbles does Joe have? 
 

The first sentence of this problem is identical to the first sentence of Combine 1. 
The second sentence requires that children first understand that ‘gave’ in this case 
refers to an increase, and then increase the initial set by the appropriate number of 
marbles. The answer again involves counting the set described by the question by 
counting it all, as a separate assignment. 
 
In contrast, consider what happens when the solution set cannot be determined by 
reference to the final ownership alone, as in Change 3: 

Joe had 3 marbles. 
Then Tom gave him some more marbles. 
Now Joe has 8 marbles. 
How many marbles did Tom give Joe? 

 
Solving this problem involves counting out an initial set of 3 marbles, then 
increasing that set by 5 marbles in response to ‘Now Joe has 8 marbles’. At this 
point, Level 1 children’s representation of the problem cannot cope with a missing 
set and they relate to the final set of marbles belonging to Joe (which is mentioned) 
as the set of added marbles. Therefore when asked, ‘How many marbles did Tom 
give to Joe?’ children answer, ‘eight’, or ֹeleven´ and not the correct answer, ‘5’ 
(Riley, 1983). 
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Thus, our analysis not only explains how Level 1 children solve certain problems 
successfully, but also why children at that level fail to solve other problems which 
require the ability to link events (as in the case of Change 3 problems). This is the 
knowledge that we attribute to children at Level 2. We will not discuss here in detail 
the other levels that appear in the table. The interested reader can find these in 
Nesher et al. (1982b). 
 
The ability to solve problems such as Change 5 and Change 6 at Level 3 introduces 
one of the most powerful predictions of our theoretical model. In these problems, 
the semantic schemes that originated in children’s experiences with ordinary 
language contradict the newly learned semantics of addition and subtraction.   
 
For example, let us consider a problem of the Change 5 type: 

Dan had some marbles. 
He found 5 more marbles. 
Now he has 8 marbles. 
How many marbles did he have to start with? 

 
Children’s experience with natural language will direct them to add (‘found’ means 
'having more', thus ‘adding’). Choosing to subtract (for the correct solution) can be 
achieved only if the semantics of natural language and the mathematical language 
are differentiated as two autonomous systems, so that each can be further elaborated 
to reach the necessary coordination between the two systems.  Solving a Change 5 
problem involves interpreting the ‘initial state’, the ‘change’ and the 'final state’ of 
the above problem in a non-temporal manner as in a part-part-whole relationship. 
Since one part and the whole are given, finding the second part is achieved by 
subtraction.  
 
Thus, at Level 3 children are able to create the mapping between their natural 
language knowledge and mathematical knowledge, not on the basis of isolated 
verbal cues, but rather, on the basis of understanding the underlying semantics of 
both languages. Now children are able to impose the logico-mathematical structure, 
which is reversible and atemporal, on a sequential-temporal situation described by 
natural language. To sum up, our hypothesis concerning the developmental levels 
explains the type of problems that can be solved by children at a given level, as 
shown in Table 4. 
 
While we have shown in detail the evolvement of the additive scheme, other studies 
similarly describe the development of  the multiplicative scheme (Davydov, 1969; 
Fischbein, Deri, Nello & Marino, 1985; Nesher, 1988; Greer, 1994; Schwartz, 
1995).
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Table 4. 
Word Problems by Levels of Development 

 
Type of Problem Level 1 Level 2 Level 3 Level 4 
Combine 1 X    
Combine 2   X  
     
Change 1 X    
Change 2 X    
Change 3  X   
Change 4  X   
Change 5   X  
Change 6   X  
     
Compare 1   X  
Compare 2   X  
Compare 3   X  
Compare 4   X  
Compare 5    X 

Compare 6    X 
 

More complex mathematical structures 
Once children have attained the autonomous mathematical additive or multiplicative 
structure, it will serve them in all contexts where addition, subtraction, 
multiplication or division is required. A three-argument scheme (for those 
operations) can be depicted in a diagram consisting of three related components (see 
Figure 3).  The nature of one-step word problems is such that the text describes two 
of the components (needed for binary operations) in full, and the solver is asked to 
discover the quantity of a third component which is given only by its set 
description. Equipped with a scheme for the whole situation, each component can 
be assigned a role (a part or a whole, a product or a factor). In the diagram the two 
upper boxes represent the subsets (parts, or factors), while the bottom box 
represents the union of the subsets (the whole, or the product). 

 
 
 

 
 
 

Figure 3. 
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With the above scheme encapsulated as a mathematical object we can construct 
higher mathematical hierarchies that will serve us as schemes in more complex 
situations. The following schemes demonstrate, for example, the possible situations 
for two-step problems (see Figure 4). 
 
 
 
 
 
 
 
 
 
 

Shared part Hierarchical Shared whole 

 
Figure 4. 

 
Note that these three schemes exhaust all possibilities of combining the basic 
schemes as described in Figure 3. One main advantage of using schemes is the fact 
that the schemes we use in mathematics, while limited in number, correspond to 
many situations in which they can be applied. This should direct us to teach 
mathematics via general schemes. 
 
The condensed nature of the schemes can be described by the following example: 
Problems 1 to 4 are all derived from the same situation that could be described by 
the Hierarchical scheme but each time we ask regarding a different component  
(See Figure 5). 
 
Problem 1:   A total of 35 flowers are distributed equally among 7 vases.  In each 
vase are 3 tulips and the rest are roses.  How many roses are there in each vase? 
 
Problem 2:   A total of 35 flowers are distributed equally among vases.  In each 
vase are 3 tulips and 4 roses.  How many vases are there? 
 
Problem 3:   Flowers are distributed equally among 7 vases.  In each vase are 3 
tulips and 4 roses.  How many flowers are there in all vases? 
 
Problem 4:  A total of 35 flowers are distributed equally among 7 vases.  In each 
vase are 4 roses and the rest are tulips.  How many tulips are there in each vase? 
 

All above problems share the same structure, since it is the same situation. 



12 The role of schemes in solving word problems 

Problems 5 is a situation described by the “Shared Whole” scheme: 
 
Problem 5: There are 8 girls and 12 boys in the classroom. They were divided 
into 5 equal groups. How many children were in each group? 

 
The following example illustrates the case of the “Shared Part” scheme:  
 
Problem 6: 17 children came to the party. At the end of the party, 15 flowers 
were left and they were given to the girls. Each girl got 3 flowers. How many 
boys were at the party? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Hierarchical 

Roses in each 
vase 

Flowers in each 
vase 

Tulips in each 
vase 

+

Vases 

Flowers in all 

X

 
Figure 5. 

 
Problems 5 and 6, of course, can be elaborated into other problems emerging from 
the same situation, as detailed in Problems 1 to 4, which actually describe the same 
situation. The schemes enable us to show the basic mathematical structures 
underlying the parsimony of word problems beyond the variety of contexts and 
textual formulations. 
 

The distinction between schemes and flowcharts 
We would like to emphasize that the scheme in our interpretation is a condensed 
encapsulation of a situation and not a flowchart. Some researchers have confounded 
a flowchart for action and a scheme. For example,  Reusser (1988; 1992) has a 
similar graphical net describing the solution path of a problem. His graphical 
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notation is similar to ours but does not include the notion of schema. Let us examine 
the two problems in detail: 
 
Problem 7: At the party were 12 boys, at the end of the party 15 flowers were 
distributed to the girls, each girl got 3 flowers. How many children were there at 
the party?  
 
Problem 8: 17 children came to the party. 12 were boys and the rest were girls. 
At the end of the party each girl got 3 flowers. How many flowers were 
distributed to all the girls?  
 

 Reusser would set up two separate flowcharts as follows: each pair of boxes is 
combined by the next operation required. Thus, the flowchart can be constructed 
only after already knowing how to solve the problem and how to order the given 
information in a sequence that fits the solution path. The flowchart for Problem 7 is 
given in figure 6 and for Problem 8 in figure 7. 
 
 

 3 flowers per girl 

(17) ? children 

12 boys(5) ? girls

15 flowers 

: 

 +

 
 
 
 
 
 
 
 

Figure 6. 
 
 

 
 
 
 
 
 
 
 
 
                     

(15)  flowers

 17  children 

-

12  boys 

(5) ?  girls 3  flowers per girl 

x

                                                                  Figure 7. 
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If a scheme approach is adopted, then the two problems are derived from a single 
schema, the Shared-Part Schema, in which the known and unknown quantities are 
given for each problem in different slots of the same scheme.  Thus, Problems 6, 7 
and 8 will have the same scheme (See figure 10). 
 

Another attempt was made by Schwartz (1986) who suggested a graphical net, 
showing the operational connection between quantities given in the problems. For 
him, too, the net is a flowchart which is different for each of the above two 
problems: 
 
Schwartz's net for Problem 7 is given in Figure 8: 
 
 
 There 12 boys at the party             

15 flowers distributed 

3 flowers per girl 

(?) How many girls were at the party? 

(?) How many children were at the party? 

Figure 8. 
 
 
 

Schwartz's net for Problem 8 is given in Figure 9: 
 
There are 17 children at the party            

There were 12 boys at the party 

3 flowers were distributed to each girl 

(?) How many girls were at the party? 

(?) How many flowers were distributed to all the girls? 

Figure 9. 
 
 

As can be seen again, the table can constructed only one already realizes how to 
solve the problem. He should know on which quantities to operate first and on 
which later. The role of a scheme is different (see figure 10). It is the same scheme 
for problems 6, 7, and 8. 
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(3) ?  flowers per 
girl 

15 flowers 

(5) ?  girls 

 x 

17children 

12  boys 

 +

 
 
 
 
 
 
 
 
 
 

 
Figure 10. 

 
In SPA, the role of the students is to construct a scheme for the situation, rather than 
for the solution path. The solution path is automatically derived from the scheme of 
the situation and the uncompleted slots.  When a scheme is formulated for the entire 
situation then both problems are derived from the same situation and the same 
scheme. Thus, where Reusser and Schwartz present a new flowchart for each 
problem, the schemes in our case condense the multiplicity of two-step problems, 
into only three possible basic schemes. 
 
The above analyses were tested empirically (for further details see Hershkovitz, 
Nesher & Yerushalmy, 1990; Hershkovitz & Nesher, 1996; Hershkovitz & Nesher, 
1997). Since both Schwartz's approach and the schemes approach were designed as 
software programs (the AP for Schwartz's approach and the SPA for the schemes 
approach, respectively) an experiment was conducted comparing success in solving 
two-step word problems using the two software programs, with compelling results: 
 
While there was no difference between the two groups examined in respect to easy 
problems (we used a prior grading for problem difficulty from another empirical 
study (Nesher & Hershkovitz, 1994)), the difference emerged in two types of cases: 
first, the scheme approach was critical for difficult problems, and second, it was 
most helpful for low achievers (see Table 5). 
 
Moreover, we noticed another difference regarding the mode of solving word 
problems.  While solvers using the Schwartz AP program for difficult problems 
were playing blindly and rapidly with the given numbers, mostly erroneously, 
solvers who were using the schemes could not rush, as they had to first fill in the 
scheme before doing anything with the numbers. Thus, although it took them longer 
to analyze the problems, the process in most cases ended with a correct solution.  
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Table 5 
Attainment scores for easy and difficult problems by low and high achievers 
 

Students Program Easy problems Difficult problems 
SPA 1.78 1.74  

All AP 1.72 0.97 
SPA 1.67 1.56  

Low achievers AP 1.40 0.53 
SPA 1.86 1.86  

High achievers AP 2.00 1.35 
 

This was particularly true for the low achievers. We thus realized that the scheme 
approach has introduced a new style of coping with the difficulties of word 
problems. Instead of rushing to do something, anything, with the available numbers, 
or sink into despair, we observed a sincere effort to solve the problem correctly and 
invest more than just one second in analyzing the situation. 
 
The following diagram (Figure 11) shows the difference in style while working on 
two-step word problems with AP and SPA. The diagram shows (in seconds) three 
stages of work on the problems: (1) reading the text; (2) analysis of the text and (3) 
working on the solution. 

 
 

Reading  **** 
Analyzing         **************   

 
Low  
achievers Solving                           ************                
   

Reading  ***** 
Analyzing           **********************     

 
 
 
AP 

 
High  
achievers Solving                                       ********************       

    
Reading  ******** 
Analyzing             **************************** 

 
Low  
achievers Solving                                                  **************** 
   

Reading  ******* 
Analyzing            ***************************** 

 
 
 
SPA 

 
High  
achievers Solving                                                  ***********  

* means 10 seconds 
Figure 11. 
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As can be seen from the diagram, low achievers and high achievers are behaving 
similarly when using the SPA software, while the low-achievers working with AP 
are devoting a short attention span to the problems, and of course failing to solve it 
correctly in the end. More interesting is the fact that working with schemes caused 
the low achievers to gain better scores than the high achievers working with AP (see 
Table 5). 
 

Can Schemes be Taught? 
Schemes are considered by all to be innate and abstract. Yet it seems that we can 
foster construction of schemes by being aware of their role. One way, suggested by 
Dorfler (1991), is to work with students on the graphical representation of the 
schemes: 

An image schemata thereby is a schematic structure which in a highly 
stylized form depicts or exhibits the main feature and relationships of 
situations and processes to which potentially the word refers". (pp. 19)…." 
Image schemata are used to make relationships cognitively manipulable and 
understandable (p. 20). I want to view an image schema as the perceptive 
and/or cognitive interaction ‘with the just imagined’. I will call the latter 
‘concrete carrier. The representations are more or less suited for stimulating 
the process (p. 21). 

The image and its graphical representation can serve as "concrete carriers" that 
enable using the scheme with its inner relations and connections.  We regard the 
graphical representation of the schemes as a very powerful tool on which the 
students practice how to analyze a given word problem in terms of the abstract 
underlying scheme. 
 
Evidence of the fact that in any problem solving situation there are underlying 
schemes that direct the solution which can be learned from our following 
experiment: A group of 49 fifth and sixth graders were asked to read aloud each of 3 
two-step problems, then to retell  (repeat) the problem and only then solve it (for 
details see Hershkovitz & Nesher, 2001). An example of one such problem is 
Problem 9: 

Problem 9: Lunch bags were prepared for the children going on a trip. Each 
lunch bag included 5 pieces of fruit, 2 of which were apples and the rest 
dates. For all lunch bags they needed 240 dates. How many lunch bags were 
prepared altogether? 

 
Protocols of the three problems were analyzed along the three dimensions exhibited 
by the solvers: 
1.  Exact retelling of the problem. 
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2. Changing the story, but retaining the scheme of the story (either by adding details 
about the content of the trip, or changing the order of the given numerical 
information).  
For example Yoni  noted: 

 Somebody from the school sport committee, or somebody else, I am not sure 
who he was, has prepared lunch bags for a trip organized by the sport club. 
In each bag they put 5 pieces of fruit that included 2 apples and 3 dates. 

He then wrote “2+3=5”, and continued:  
In order to prepare all the lunch bags they used 240 dates. How many 
children received lunch bags?  He wrote “240:3=80”, adding now I also 
know how many apples they used, and wrote again “80 x 2=160". 
 

3. Changing the story by changing the underlying scheme. 
For example, Sharon wrote: 

They prepared lunch bags. There were 5 pieces of fruit in each bag, 3 dates 
and 2 apples; wrote “240:5=48”, and said, “240 are all the pieces of fruit 
and each child receives 5 pieces of fruit".  

 
He has thus simplified the problem into a one-step division problem without solving 
the original problem. 
 

The main finding of this study was that almost all children who correctly solved the 
problems elaborated the original story into a situation familiar to them, while 
conserving the original scheme. All students who erred in solving the problems 
changed the story into a simplified version that allowed them to use a more 
elementary arithmetic scheme. 
 
 

General schemes and open problems 
To teach by using schemes means to teach by means of the most generalized cases. 
Let us use two different problems as examples:  
 

 Problem 10:  Roni visited a farm. He saw cows and chickens. He did not 
remember how many were there, but he remembered the guide saying that 
they had altogether 100 legs. How many cows and how many chickens were 
there? 

 
There is of course more than one answer to this question. One can guess at least one 
or two answers, but the interesting process is to discover all possible answers, as 
well as to answer some other questions such as: 
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1. Is it possible to have the same number of legs for cows and chickens? 
2. Is it possible to have the same number of heads for cows and chickens? 
3. Is it possible to have an odd number of chickens? 
4. What is the minimum number of chickens, if there are both chickens and 

cows in the farm?  What is the maximum number? 
5. What are the possibilities, if there are more cows than chickens? 
6. Make up your own questions…. 
 

 Anyone who has a general scheme for this type of problem, such as in Figure 12, 
can easily comprehend all possible alternatives and answer many different 
questions. 
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(2)  
Legs per chicken 

 X 

(4) 
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(?) 
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(?) 
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+

   X 

+

 
 

Figure 12. 
 

Problem 11: Two cars are traveling from Jerusalem to visit another city. 
Car B left 3 hours after car A.  

 
1. Will they meet on their way?  Under what conditions? 
2. When will they meet? 
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3. How far from Jerusalem will they meet? 
4. What would be the description of two cars traveling toward each other? 
5. Make up your own questions… 

 
A graphical scheme for problem 11 can be seen in Figure 13. 

 
 
 
 
 
 
 
 

 
Figure 13. 

 
In a similar way one can construct a general scheme for cars that are traveling in 
opposite directions and meet somewhere on the way, and we can use the same 
schemes for other contexts such as work, voltage, and so on.  
 
Once we have generated a representation for a general scheme for such problems, 
we can learn that each problem in our standard textbooks is just one such case 
among many others, that the singular cases are not important, and that it is the 
general scheme that counts. 
 

Some concluding remarks 
We have tried to demonstrate that the ability to solve problems in mathematics is 
dependent on the level of schemes and structures available to the children and these 
change due to time and to learning. Students can benefit most if aware of the 
schemes that are needed at each level of learning and present the problems in their 
most general form. 
 
We believe that the goal of teaching mathematics in general and word problems in 
particular, is to enrich the repertoire of schemes available to each student. Patterson 
(Patterson & Smith, 1986) says that experts in a given area have rich and complex 
schemes that enable them to absorb new information in that area and suggest the 
most efficient solution. Similarly Lester (Lester & Garofalo, 1982; Lester, 1994) 
who tried to characterize good solvers, indicated that the knowledge of "good" 
solvers is within a knowledge base and is organized by rich schemes. The collection 
of word problems that textbooks present at school is usually large, but not always 
directed by the study of schemes. We believe that we can foster our students' 
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problem solving ability in mathematics by enriching their mathematical schemes as 
the building blocks of the students' cognition. 
 
It would be proper to remember that the notion of scheme did not start with Piaget, 
or within mathematics education research, but rather can be traced to Kant (1724-
1804) who, in a chapter on The Schematism of the Pure Concepts of Understanding, 
wrote: 
 

 These conditions of sensibility constitute the universal condition under 
which alone the category can be applied to any object. This formal and pure 
condition of sensibility to which the employment of the concept of 
understanding is restricted, we shall entitle the schema of the concept.  The 
procedure of understanding in these schemata we shall entitle the 
schematism of pure understanding. The schema is in itself always a product 
of imagination. Since, however, the synthesis of imagination aims at no 
special intuition but only at unity in the determination of sensibility, the 
schema has to be distinguished from the image." (Kant 1980 Edition, p. 182)  
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	The sources of these two knowledge structures, as was noted by Piaget (Piaget, 1970; Piaget, 1971,1967), are not the same. The logico-mathematical growth of children cannot, of course, be understood as divorced from their experience with physical objects, yet the mechanism for that growth is different, as indicated by Piaget’s reference to ‘simple abstraction’ and ‘reflective abstraction’ (Piaget & Inhelder 1969; Piaget 1971, 1967). 
	While we have shown in detail the evolvement of the additive scheme, other studies similarly describe the development of  the multiplicative scheme (Davydov, 1969; Fischbein, Deri, Nello & Marino, 1985; Nesher, 1988; Greer, 1994; Schwartz, 1995). Table 4. 

